•   首页
  • 新闻中心
  • 学校概况
  • 教研教学督导
  • 德育园地
  • 后勤保障
  • 年级工作
  • 党团共建
  • 当前位置:首页 >> 年级工作 >> 高二年级工作 >> 导学案 >> 正文
  •    新闻搜索
  •    最新新闻
  • 利辛高级中学2025年特长生招生考试专业课拟
  • 利辛高级中学 2025年普通高中特长生招生实
  • 利辛高级中学招聘公告
  • 利辛高级中学2024年特长生招生考试专业课拟
  • 利辛高级中学2024年普通高中特长生招生实施
  • 利辛高级中学文印室招标公告
  • 利辛高级中学2023年特长生招生考试专业课拟
  • 关于利辛高级中学特长生招生指标调整的公告
  • 利辛高级中学 2023年普通高中特长生招生实
  • 汇聚点点微光,彰显爱之力量
  •    热点新闻
  • 巩校长在亳州市“两会”上的发言
  • 利辛高级中学2024年特长生招生考试专业课拟
  • 利辛县高中英语学科青年教师教学大赛观感
  • 绿色课堂“同伴互助”活动总结
  • 我校成功举办高校招生咨询会
  • 教研活动调查情况通报及小结
  • 高二简报第四十期(总70期)
  • 参加省基础教育教育教学论文评选的通知
  • 高三简报 第二十九期
  • 关于动员和组织教师参加2014年全省教师教育

第三章 变化率与导数 变化的快慢与变化率



2016-1-30 11:48:42  阅读数:  网友评论: 条

第三章 变化率与导数  变化的快慢与变化率

                                   撰搞人:张士强   审核人:冯冰

学习目标:

1.了解函数平均变化率的概念.

 

2.掌握函数平均变化率的求法.

 

3.理解瞬时变化率的概念.

教学重点与难点:

重点:了解函数平均变化率的概念,掌握函数平均变化率的求法.

难点:对瞬时变化率的理解。

内容纲要:

    1. 平均变化率的概念和瞬时变化率的概念.

2. 平均变化率的求法.

重点难点解析:

一.变化率问题 

1.在气球膨胀这一变化过程中,当空气容量从V1增加到V2时,气球的半径从r(V1)增加到r(V2),气球的平均膨胀率是____________.

2.在高台跳水这一变化过程中,高台跳水运动员的高度从h(t1)变化到h(t2)时,他的平均速度为____________.

3.在汽车刹车这一变化过程中,汽车行驶的速度关于刹车的时间的函数                           从刹车开始到汽车停止,汽车的平均减速是____________.

4.已知函数,令,,则当时,比值

____________,为从到的平均变化率,及函数图像上的两点,连线的____________。

二.瞬时变化率

1.对于一般的函数,在自变量从变化到的过程中,若,,则函数的平均变化率为                =            

     当趋于0时,平均变化率就趋于函数在点的瞬时变化率。

    2.函数在从到的平均变化率刻画的是函数值在                                          变化的快慢。

    3. 函数在的瞬时变化率,刻画的是函数在                   变化的快慢。 

 

   典例探究

   例1 求函数在到之间的平均变化率,并计算当,时    的平均变化率的值。

 

  

 

 

 

 

   例2 求函数y=f(x)=3x2+x在点x=1处的瞬时变化率.

 

 

 

 

 

 

 

  例3  质点M按规律s=2t2+3作直线运动(位移单位:cm,时间单位:s),求质点M 在t=2时的瞬时速度,并与运用匀变速直线运动速度公式求得的结果进行比较.

 

 

 

 

 

 

 

 例4 国家环保局在规定的排污达标的日期前,对甲、乙两家企业进行检查,其连续检  测结果如图所示.试问哪个企业治污效果好(其中W表示治污量)?

 

 

 

 

 

 

 

【精要练习题】

   1.函数y=f(x)的自变量x由x0改变到x0+Δx时,函数值的改变量Δy等于(  )

A.f(x0+Δx)    B.f(x0)+Δx

C.f(x0)·Δx D.f(x0+Δx)-f(x0)

2.f(x)=3x在x从1变到3时的平均变化率等于(  )

A.12 B.24

C.2 D.-12

3.在x=1附近,取Δx=0.3,在四个函数①y=x;②y=x2;③y=x3;④y=x(1)中.平均变化率最大的是(  )

A.④ B.③

C.② D.①

4.已知函数y=x(2),当x由2变为1.5时,函数的增量为(  )

A.1 B.2

C.3(1) D.2(3)

5.若函数f(x)=2x2-1的图像上一点(1,1)及邻近一点(1+Δx,1+Δy),则Δx(Δy)等于(  )

A.4         B.4x

C.4+2Δx D.4+2(Δx)2

6.一质点运动的方程为s=5-3t2,则在一段时间[1,1+Δt]内相应的平均速度为(  )

A.3Δt+6 B.-3Δt+6

C.3Δt-6 D.-3Δt-6

 

7.y=x2-2x+3在x=2附近的平均变化率是________.

8.物体的运动方程是s(t)=4t-0.3t2,则从t=2到t=4的平均速度是________.

9.已知函数f(x)=x2+x,分别计算f(x)在自变量x从1变到3和从1变到2时的平均变化率.

 

 

 

 

 

 

10.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m,时间单位:s).求小球在5到6秒间的平均速度和5到5.1秒间的平均速度,并与匀速直线运动速度公式求得的t=5时的瞬时速度进行比较.

 

 

 

 

 

 

 

 

 

 

【精要练习题】答案:

1——6     7. 2+Δx  8.2.2  9.4  10.5到5.1秒间的平均速度更接近5秒时的瞬时速度.

 

 

相关评论
评论表单加载中...
相关新闻
  • 文科选修1-1第三章 变化率与导数单元测试卷
  • 第三章 变化率与导数 导数的四则运算法则
  • 第三章 变化率与导数 变化的快慢与变化率
  • 第三章 不等式 §4简单的线性规划
  • 第三章 不等式 §3 基本不等式

皖ICP备09007733号-2 版权所有:利辛高级中学 技术支持:利辛高级中学网络管理中心